PRINCIPLE OF MATHEMATICAL INDUCTION PART 2
Using principle of mathematical
induction prove that 2n > n for all positive integers n.
Let P ( n ):
2n > n
When n = 1, 21 > 1. Hence P ( 1 ) is true.
When n = 1, 21 > 1. Hence P ( 1 ) is true.
Assume P ( k
) is true for any positive integer k, then
2k > k …( 1 )
2k > k …( 1 )
Multiply
both side of equation ( 1 ) by 2, we get
- 2.2k > 2k
- 2k + 1 > 2k
- 2k + 1 > k + k
- 2k + 1 > k + 1.
Comments
Post a Comment